Galerkin FEM for Fractional Order Parabolic Equations with Initial Data in H− s, 0 ≤ s ≤ 1
Conference Paper
-
- Overview
-
- Identity
-
- Additional Document Info
-
- Other
-
- View All
-
Overview
abstract
-
We investigate semi-discrete numerical schemes based on the standard Galerkin and lumped mass Galerkin finite element methods for an initial-boundary value problem for homogeneous fractional diffusion problems with non-smooth initial data. We assume that Ω ⊂ ℝ d , d = 1,2,3 is a convex polygonal (polyhedral) domain. We theoretically justify optimal order error estimates in L 2 - and H 1 -norms for initial data in H -s (Ω), 0 ≤ s ≤ 1. We confirm our theoretical findings with a number of numerical tests that include initial data v being a Dirac δ-function supported on a (d-1)-dimensional manifold. © 2013 Springer-Verlag.
author list (cited authors)
-
Jin, B., Lazarov, R., Pasciak, J., & Zhou, Z.
citation count
complete list of authors
-
Jin, Bangti||Lazarov, Raytcho||Pasciak, Joseph||Zhou, Zhi
editor list (cited editors)
-
Dimov, I., Faragó, I., & Vulkov, L. G.
publication date
publisher
published in
Identity
Digital Object Identifier (DOI)
International Standard Book Number (ISBN) 13
Additional Document Info
start page
end page
volume
Other
URL
-
https://doi.org/10.1007/978-3-642-41515-9