Asymptotic expansions in time for rotating incompressible viscous fluids Academic Article uri icon

abstract

  • We study the three-dimensional Navier--Stokes equations of rotating incompressible viscous fluids with periodic boundary conditions. The asymptotic expansions, as time goes to infinity, are derived in all Gevrey spaces for any Leray-Hopf weak solutions in terms of oscillating, exponentially decaying functions. The results are established for all non-zero rotation speeds, and for both cases with and without the zero spatial average of the solutions. Our method makes use of the Poincar'e waves to rewrite the equations, and then implements the Gevrey norm techniques to deal with the resulting time-dependent bi-linear form. Special solutions are also found which form infinite dimensional invariant linear manifolds.

published proceedings

  • ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE

altmetric score

  • 0.5

author list (cited authors)

  • Hoang, L. T., & Titi, E. S.

citation count

  • 6

complete list of authors

  • Hoang, Luan T||Titi, Edriss S

publication date

  • February 2021