We introduce hybrid fractals as a class of fractals constructed by gluing several fractal pieces in a specific manner and study energy forms and Laplacians on them. We consider in particular a hybrid based on the $3$-level Sierpinski gasket, for which we construct explicitly an energy form with the property that it does not "capture" the $3$-level Sierpinski gasket structure. This characteristic type of energy forms that "miss" parts of the structure of the underlying space are investigated in the more general framework of finitely ramified cell structures. The spectrum of the associated Laplacian and its asymptotic behavior in two different hybrids is analyzed theoretically and numerically. A website with further numerical data analysis is available at http://www.math.cornell.edu/~harry970804/.