Cardiovascular and haematological responses of Atlantic cod (Gadus morhua) to acute temperature increase Academic Article uri icon

abstract

  • For fish to survive large acute temperature increases (i.e. >10.0 degrees C) that may bring them close to their critical thermal maximum (CTM), oxygen uptake at the gills and distribution by the cardiovascular system must increase to match tissue oxygen demand. To examine the effects of an acute temperature increase ( approximately 1.7 degrees C h(-1) to CTM) on the cardiorespiratory physiology of Atlantic cod, we (1) carried out respirometry on 10.0 degrees C acclimated fish, while simultaneously measuring in vivo cardiac parameters using Transonic probes, and (2) constructed in vitro oxygen binding curves on whole blood from 7.0 degrees C acclimated cod at a range of temperatures. Both cardiac output (Q) and heart rate (fh) increased until near the fish's CTM (22.2+/-0.2 degrees C), and then declined rapidly. Q(10) values for Q and fh were 2.48 and 2.12, respectively, and increases in both parameters were tightly correlated with O(2) consumption. The haemoglobin (Hb)-oxygen binding curve at 24.0 degrees C showed pronounced downward and rightward shifts compared to 20.0 degrees C and 7.0 degrees C, indicating that both binding capacity and affinity decreased. Further, Hb levels were lower at 24.0 degrees C than at 20.0 degrees C and 7.0 degrees C. This was likely to be due to cell swelling, as electrophoresis of Hb samples did not suggest protein denaturation, and at 24.0 degrees C Hb samples showed peak absorbance at the expected wavelength (540 nm). Our results show that cardiac function is unlikely to limit metabolic rate in Atlantic cod from Newfoundland until close to their CTM, and we suggest that decreased blood oxygen binding capacity may contribute to the plateau in oxygen consumption.

author list (cited authors)

  • Gollock, M. J., Currie, S., Petersen, L. H., & Gamperl, A. K.

citation count

  • 117

publication date

  • August 2006