Fuel homeostasis in the harbor seal during submerged swimming. Academic Article uri icon

abstract

  • 1. The turnover rates and oxidation rates of plasma glucose, lactate, and free fatty acids (FFA) were measured in three harbor seals (average mass = 40 kg) at rest or during voluntary submerged swimming in a water flume at 35% (1.3 m.s-1) and 50% (2 m.s-1) of maximum oxygen consumption (MO2max). 2. For seals resting in water, the total turnover rates for glucose, lactate, and FFA were 23.2, 26.2, and 7.5 mumols.min-1.kg-1, respectively. Direct oxidation of these metabolites accounted for approximately 7%, 27%, and 33% of their turnover and 3%, 7%, and 18% of the total ATP production, respectively. 3. For swimming seals, MO2max was achieved at a drag load equivalent to a speed of 3 m.s-1 and averaged 1.85 mmol O2.min-1.kg-1, which is 9-fold greater than resting metabolism in water at 18 degrees C. 4. At 35% and 50% MO2max, glucose turnover and oxidation rates did not change from resting levels. Glucose oxidation contributed about 1% of the total ATP production during swimming. 5. At 50% MO2max, lactate turnover and anaerobic ATP production doubled, but the steady state plasma lactate concentration remained low at 1.1 mM. Lactate oxidation increased 63% but still contributed only 4% of the total ATP production. Anaerobic metabolism contributed about 1% of the total ATP production at rest and during swimming. 6. The plasma FFA concentration and turnover rate increased only 24% and 37% over resting levels, respectively, at 50% MO2max. However, the oxidation rate increased almost 3.5-fold and accounted for 85% of the turnover.(ABSTRACT TRUNCATED AT 250 WORDS)

published proceedings

  • J Comp Physiol B

author list (cited authors)

  • Davis, R. W., Castellini, M. A., Williams, T. M., & Kooyman, G. L.

citation count

  • 33

complete list of authors

  • Davis, RW||Castellini, MA||Williams, TM||Kooyman, GL

publication date

  • November 1991