Facile Exfoliation of 3D Pillared Metal-Organic Frameworks (MOFs) to Produce MOF Nanosheets with Functionalized Surfaces.
Overview
Research
Identity
Additional Document Info
Other
View All
Overview
abstract
The production of two-dimensional (2D) ultrathin metal-organic framework (MOF) nanosheets with functionalized surfaces is significant for extending their applications. To date, no protocol has been developed yet to solve this problem. Herein, we report a facile, mild, and efficient method to produce 2D monolayer MOF nanosheets with hydrophobic surfaces from layer-pillared 3D MOFs. This approach is based on the replacement of weaker coordinating pillar ligands with stronger coordinating capping ligands with the assistance of a high concentration gradient of the latter. Utilizing this method, the replacement of the 4,4'-bipyridine (bpy) pillars in two cadmium-based layer-pillared MOFs with alkylpyridine derivatives has been achieved, producing 2D MOF nanosheets with monolayer thickness and double-sided hydrophobic surfaces. The resulting hydrophobic 2D MOF nanosheets exhibit good performance for the separation of oil and water.