Innervation patterns of mystacial vibrissae support active touch behaviors in California sea lions (Zalophus californianus) Academic Article uri icon

abstract

  • Vibrissae or follicle-sinus complexes (F-SCs) are highly developed mammalian sensory structures. These blood-filled sinuses are richly innervated and possess novel mechanoreceptors. Although much is known regarding the function of F-SCs in terrestrial mammals, much less is known regarding marine carnivores such as pinnipeds. Pinnipeds possess the largest, most highly innervated vibrissae of any mammal. One such pinniped is the California sea lion, which are generalist marine predators that rely heavily upon tactile discrimination capabilities. Psychophysical studies demonstrate that haptic tactile discrimination using F-SCs is exceptionally sensitive. However, our knowledge of the structure and function of F-SCs in otariids is limited. Our objectives were to investigate the innervation and microstructure of F-SCs across the mystacial vibrissal field and infer function from haptic performance studies in California sea lions. Innervation and microstructure of vibrissae differed considerably compared to similar data available for phocids. Total innervation of mystacial vibrissae was estimated to be 86,042 axons. Investigations of innervation density and investment of microvibrissae versus macrovibrissae demonstrated a significantly increased axon density per F-SC in medial microvibrissal regions compared to lateral macrovibrissae, which supports psychophysical data and somatotopic organization of the central nervous system involved with tactile discrimination capability. Innervation increased from medial microvibrissae (705 ± 125 axons/F-SC) to lateral macrovibrissae (1,447 ± 154) as well as from dorsal (541 ± 60) to ventral (1,493 ± 327) vibrissal regions. These data provide a more complete picture of the sensory ecology of this important aquatic mammalian lineage; the specialization of peripheral sensory structures, central nervous structures with demonstrated enhanced haptic capabilities behaviorally has likely led to the ecological success of California sea lions.

altmetric score

  • 3.5

author list (cited authors)

  • Sprowls, C. D., & Marshall, C. D.

citation count

  • 1

publication date

  • August 2019

publisher