Growth, Physiological, and Biochemical Responses of Tung Tree (Vernicia fordii) Seedlings to Different Light Intensities Academic Article uri icon

abstract

  • As a result of its high photosynthetic efficiency, the tung tree (Vernicia fordii) is a fast-growing heliophile, yielding fruit within 3 years. In addition, tung oil extracted from the fruit seeds is an environmentally friendly paint used widely in China. However, mutual shading inside a tung tree canopy leads to a low yield of fruit because of weak or dead lower branches. In this project, a pot experiment was conducted to understand the growth, physiological, anatomical structure, and biochemical responses of tung trees under various shading levels. Tung tree seedlings were subjected to different light intensities100% sunlight (no cover), L100; 75% sunlight (25% shading), L75; 50% sunlight (50% shading), L50; and 20% sunlight (80% shading), L20from June to August. Results indicate that the L75 treatment reduced significantly the net photosynthetic rate (Pn), stomatal conductance (gS), transpiration rate (E), total aboveground and root dry weight (DW), maximum net photosynthetic rate (Amax), and maximum rate of electron transport at saturating irradiance (Jmax) compared with the control, although plant height and leaf area (LA) were not reduced. Lower light intensities (L50 and L20) and longer duration of treatment led to greater reduction in growth, leaf thickness, and photosynthetic potential (Amax and Jmax). Chlorophyll a (Chl a), chlorophyll b (Chl b), and total chlorophyll content were increased in the L50 and L20 treatments compared with L100 and L75. There was no significant reduction in the enzyme activities of ribulose-1,5-bisphosphate carboxylase (Rubisco) and phosphoenolpyruvate (PEPC) of the seedlings using the L75 treatment; however, lower light intensities (L50 and L20) and longer duration of shade treatment resulted in a significant reduction in enzyme activity. In summary, the results suggest that tung trees have greater photosynthetic activity under high light intensity. Shading, even at 20%, especially for the longer term, reduced photosynthetic efficiency and growth. To prevent growth reduction, tung trees should be grown under full sun with a daily light integral (DLI) of 46 molm2d1, and mutual shading should be avoided by proper spacing and pruning.

published proceedings

  • HORTSCIENCE

author list (cited authors)

  • Li, Z. e., Shi, K., Zhang, F., Zhang, L., Long, H., Zeng, Y., ... Tan, X.

citation count

  • 1

complete list of authors

  • Li, Ze||Shi, Kai||Zhang, Fanhang||Zhang, Lin||Long, Hongxu||Zeng, Yanling||Liu, Zhiming||Niu, Genhua||Tan, Xiaofeng

publication date

  • August 2019