Background-free two-photon fluorescence readout via a three-photon charge-state modulation of nitrogen-vacancy centers in diamond.
Academic Article
Overview
Research
Identity
Additional Document Info
Other
View All
Overview
abstract
We demonstrate that a background-free readout of two-photon fluorescence from nitrogen-vacancy (NV) centers in a strongly fluorescing environment can be accomplished by all-optical means via a multiphoton charge-state modulation of NV centers in a mixture of negatively charged and neutral NV centers. A 100fs, 1060nm output of an ytterbium fiber laser is ideally suited for this modality of multiphoton microscopy, providing, as our experiments show, an efficient two-photon excitation of both NV- and NV0 charge states, but keeping the nonlinearity of n-photon ionization needed for NV-/NV0 charge-state modulation to a minimum, n=3.