A Review of Statistical Analyses on Physical Activity Data Collected from Accelerometers.
Academic Article
Overview
Research
Identity
Additional Document Info
Other
View All
Overview
abstract
Studies for the associations between physical activity and disease risk have been supported by newly developed wearable accelerometer-based devices. These devices record raw activity/movement information in real time on a second-by-second basis and the data can be converted to a variety of summary metrics, such as energy expenditure, sedentary time and moderate-vigorous intensity physical activity. Here we review some of the methods used to analyze the accelerometer data and the R packages that can generate activity related variables from raw data. We also discuss longitudinal data and functional data approaches to perform analyses for various research purposes.