EXACT SOLUTION OF SPARSE LINEAR SYSTEMS VIA LEFT-LOOKING ROUNDOFF-ERROR-FREE LU FACTORIZATION IN TIME PROPORTIONAL TO ARITHMETIC WORK
Academic Article
Overview
Research
Identity
Additional Document Info
Other
View All
Overview
abstract
2019 Society for Industrial and Applied Mathematics The roundoff-error-free (REF) LU factorization, along with the REF forward and backward substitution algorithms, allows a rational system of linear equations to be solved exactly and efficiently. The REF LU factorization framework has two key properties: all operations are integral, and the size of each entry is bounded polynomially-a bound that rational arithmetic Gaussian elimination achieves only via the use of computationally expensive greatest common divisor operations. This paper develops a sparse version of REF LU, termed the Sparse Left-looking Integer-Preserving (SLIP) LU factorization, which exploits sparsity while maintaining integrality of all operations. In addition, this paper derives a tighter polynomial bound on the size of entries in L and U and shows that the time complexity of SLIP LU is proportional to the cost of the arithmetic work performed. Last, SLIP LU is shown to significantly outperform a modern full-precision rational arithmetic LU factorization approach on a set of real world instances. In all, SLIP LU is a framework to efficiently and exactly solve sparse linear systems.