Glucoregulatory endocrine responses to intermittent exercise of different intensities: plasma changes in a pancreatic beta-cell peptide, amylin.
Academic Article
Overview
Research
Identity
Additional Document Info
Other
View All
Overview
abstract
Amylin, a peptide hormone released from the beta cells of the pancreas and cosecreted with insulin, is reported to inhibit the release of postprandial glucagon and insulin and to modulate gastric emptying. Changes in insulin and glucagon are important for controlling blood glucose levels under conditions in which metabolic rate is elevated, such as during and following exercise. Amylin may participate in the regulation of blood glucose levels in response to exercise, although the role of amylin has not been investigated. The purpose of the study was to determine the effects of a progressive, intermittent exercise protocol on amylin concentrations and to compare its response to circulating levels of insulin, glucagon, cortisol, and glucose. Seven well-trained males completed an intermittent exercise trial on a treadmill at four progressive exercise intensities: 60%, 75%, 90%, and 100% of maximum oxygen consumption (.VO(2)max). Blood samples were collected before exercise, after each exercise intensity, and for 1 hour following the exercise protocol. Subjects also completed a control trial with no exercise. Amylin and insulin rose from baseline (5.79 +/-.78 pmol/L and 4.76 +/-.88 microIU/mL) to peak after 100% .VO(2)max (9.16 +/- 1.35 pmol/L and 14.37 +/- microIU/ml), respectively and remained elevated during much of recovery. Thus, a progressive intermittent exercise protocol of moderate to maximum exercise intensities stimulates increases in amylin levels in well-trained individuals in a similar fashion to that of insulin, whereas glucagon concentrations only increase after the greatest exercise intensity, then quickly decline. Future studies should examine the effects of higher amylin concentrations in exercise recovery on glucoregulation.