Facilitating industrial symbiosis to achieve circular economy using value-added by design: A case study in transforming the automobile industry sheet metal waste-flow into Voronoi facade systems
Academic Article
Overview
Research
Identity
Additional Document Info
Other
View All
Overview
abstract
2019 Elsevier Ltd Today, a significant portion of steel production worldwide is coming from recycling practices. It is inevitable that the smelting process during steel recycling operations is expensive and consumes a tremendous amount of energy. Therefore, hypothetically, direct reuse of steel materials without smelting can be environmentally and economically advantageous over recycling. In this article, an innovative recovering path for size-specific sheet metal scrap from the automobile industry is being proposed. The idea is to directly use the sizable sheet metal scrap generated from the car-body manufacturing process in the automobile industry to design and fabricate new metal facade systems for buildings exteriors. An empirical case study was conducted, which is being presented to illustrate the benefits of reusing steel scrap over recycling with the same material using quantitative analysis. The required capital cost and energy consumption of generating a building metal facade system were evaluated. The results showed that reusing the sheet metal scrap over conventional recycling of the same material would lead to a cost reduction of approximately 40% (400 $/ton) and savings of approximately 67% (10 MJ/kg) of energy consumption. The tested concept promotes an innovative industrial symbiosis between the auto industry and the building and construction industry through creating a secondary closed supply-chain loop to achieve both circular economy and energy savings through adding value by design.