Forcing of the Upper-Tropospheric Monsoon Anticyclones Academic Article uri icon

abstract

  • Abstract During the boreal warm season (MaySeptember), the circulation in the upper troposphere and lower stratosphere is dominated by two large anticyclones: the Asian monsoon anticyclone (AMA) and North American monsoon anticyclone (NAMA). The existence of the AMA has long been linked to Asian monsoon precipitation using the MatsunoGill framework, but the origin of the NAMA has not been clearly understood. Here the forcing mechanisms of the NAMA are investigated using a simplified dry general circulation model. The simulated anticyclones are in good agreement with observations when the model is forced by a zonally symmetric meridional temperature gradient plus a realistic geographical distribution of heating based on observed tropical and subtropical precipitation in the Northern Hemisphere. Model experiments show that the AMA and NAMA are largely independent of one another, and the NAMA is not a downstream response to the Asian monsoon. The primary forcing of the NAMA is precipitation in the longitude sector between 60 and 120W, with the largest contribution coming from the subtropical latitudes within that sector. Experiments with idealized regional heating distributions reveal that the extratropical response to tropical and subtropical precipitation depends approximately linearly on the magnitude of the forcing but nonlinearly on its latitude. The AMA is stronger than the NAMA, primarily because precipitation in the subtropics over Asia is much heavier than at similar latitudes in the Western Hemisphere.

published proceedings

  • JOURNAL OF THE ATMOSPHERIC SCIENCES

author list (cited authors)

  • Siu, L. W., & Bowman, K. P.

citation count

  • 19

complete list of authors

  • Siu, Leong Wai||Bowman, Kenneth P

publication date

  • July 2019