A deep learning approach for rooftop geocoding Academic Article uri icon


  • © 2019 John Wiley & Sons Ltd Geocoding has become a routine task for many research investigations to conduct spatial analysis. However, the output quality of geocoding systems is found to impact the conclusions of subsequent studies that employ this workflow. The published development of geocoding systems has been limited to the same set of interpolation methods and reference data sets for quite some time. We introduce a novel geocoding approach utilizing object detection on remotely sensed imagery based on a deep learning framework to generate rooftop geocoding output. This allows geocoding systems to use and output exact building locations without employing typical geocoding interpolation methods or being completely limited by the availability of reference data sets. The utility of the proposed approach is demonstrated over a sample of 22,481 addresses resulting in significant spatial error reduction and match rates comparable to typical geocoding methods. For different land-use types, our approach performs better on low-density residential and commercial addresses than on high-density residential addresses. With appropriate model setup and training, the proposed approach can be extended to search different object locations and to generate new address and point-of-interest reference data sets.

author list (cited authors)

  • Yin, Z., Ma, A., & Goldberg, D. W.

citation count

  • 4

publication date

  • June 2019