CO2 Stripping of Kerogen Condensates in Source Rocks Academic Article uri icon

abstract

  • SummarySignificant research has been conducted on hydrocarbon fluids in the organic materials of source rocks, such as kerogen and bitumen. However, these studies were limited in scope to simple fluids confined in nanopores, while ignoring the multicomponent effects. Recent studies using hydrocarbon mixtures revealed that compositional variation caused by selective adsorption and nanoconfinement significantly alters the phase equilibrium properties of fluids. One important consequence of this behavior is capillary condensation and the trapping of hydrocarbons in organic nanopores. Pressure depletion produces lighter components, which make up a small fraction of the in-situ fluid. Equilibrium molecular simulation of hydrocarbon mixtures was carried out to show the impact of CO2 injection on the hydrocarbon recovery from organic nanopores. CO2 molecules introduced into the nanopore led to an exchange of molecules and a shift in the phase equilibrium properties of the confined fluid. This exchange had a stripping effect and, in turn, enhanced the hydrocarbon recovery. The CO2 injection, however, was not as effective for heavy hydrocarbons as it was for light components in the mixture. The large molecules left behind after the CO2 injection made up the majority of the residual (trapped) hydrocarbon amount. High injection pressure led to a significant increase in recovery from the organic nanopores, but was not critical for the recovery of the bulk fluid in large pores. Diffusing CO2 into the nanopores and the consequential exchange of molecules were the primary drivers that promoted the recovery, whereas pressure depletion was not effective on the recovery. The results for N2 injection were also recorded for comparison.

published proceedings

  • SPE JOURNAL

author list (cited authors)

  • Baek, S., & Akkutlu, I. Y.

citation count

  • 9

complete list of authors

  • Baek, Seunghwan||Akkutlu, I Yucel

publication date

  • June 2019