Experimental Investigation of Particulate Polylactic Acid Diversion in Matrix Acidizing Conference Paper uri icon

abstract

  • Abstract Polylactic Acid (PLA) is increasingly used in the oil industry and specifically for diversion in matrix acidizing as evidenced by a number of field cases recently published. The solid polyester is particularly attractive due to its ability to degrade in the presence of water and heat, negating the need for cleanup fluids or complicated procedures. A majority of the analysis on the effectiveness of PLA thus far comprises experiments on artificially created slots, filter cake analysis, and field trials. This paper demonstrates the effect of PLA in wormholes developed by acidizing outcrop cores. In these experiments, a wormhole is generated in a portion of the core by limiting the amount of acid injected. Next, the PLA is injected into the core using a heavy brine suspension. Finally, more acid is injected until a wormhole breaks through the core. Computer Tomography (CT) scans are taken, and the pressure drop across the core is recorded at each stage. Experiments were conducted for a variety of initial wormhole lengths. It can be difficult to suspend PLA while injecting it through a core in a way that is benign to the core, acid, and PLA; and in a way that does not add any pressure drop or diversion due to viscosity changes. This paper describes and justifies a suitable method of keeping PLA suspended to allow its use in core flood experiments. The CT scans show that even when the PLA plugs the wormhole, additional acid tends to continue to develop the dominant wormhole. The pressure drop profiles show that the pressure drop due to PLA injection is proportional to the mass of PLA, both in the wormhole and on the core surface. The pressure profiles also show that there is an increased pressure drop due to PLA in the wormhole versus in a filter cake on the surface. This paper details a new method of visualizing and analyzing the effect of PLA in a multistage acidizing treatment. Empirical correlations are presented for estimating the pressure drop caused by PLA, both as a filter cake on the formation surface and as a filling inside wormholes. The correlations were incorporated in a comprehensive carbonate acidizing model to predict the diversion efficiency of PLA particles. The simulation is verified using published field trials of diversion treatments.

name of conference

  • Day 2 Tue, April 09, 2019

published proceedings

  • Day 2 Tue, April 09, 2019

author list (cited authors)

  • Shirley, R. M., & Hill, A. D.

citation count

  • 6

complete list of authors

  • Shirley, Robert Mark||Hill, AD

publication date

  • January 2019