A locally weighted machine learning model for generalized prediction of drift capacity in seismic vulnerability assessments
Academic Article
-
- Overview
-
- Identity
-
- Additional Document Info
-
- View All
-
Overview
abstract
-
© 2019 Computer-Aided Civil and Infrastructure Engineering Drift capacity of reinforced concrete (RC) columns is an important indicator to quantify the seismic vulnerability of RC frame buildings; however, it is challenging to accurately predict this value as the nonlinear behavior can vary greatly by column type. This article proposes a novel, local machine learning (ML) model, called locally weighted least squares support vector machines for regression (LWLS-SVMR), which integrates LS-SVMR and locally weighted training criteria to enhance and generalize the prediction of the drift capacity of RC columns, regardless of the type. A database of 160 circular RC columns covering flexure-, shear-, and flexure–shear-critical specimens was developed to train and test the proposed LWLS-SVMR. The proposed LWLS-SVMR was validated by comparison with popular existing global and local learning approaches as well as a traditional empirical equation, and the results demonstrated that the proposed LWLS-SVMR is superior to all other approaches and thus, is a promising artificial intelligence technique for enhancing the prediction of drift capacity, universally across RC flexure-, shear-, and flexure–shear-critical columns. The LWLS-SVMR exhibits capabilities which may yield it a feasible approach to predict complex, nonlinear behavior in a broad-spectrum manner.
published proceedings
-
Computer-Aided Civil and Infrastructure Engineering
altmetric score
author list (cited authors)
citation count
complete list of authors
-
Luo, Huan||Paal, Stephanie German
publication date
publisher
published in
Identity
Digital Object Identifier (DOI)
Additional Document Info
start page
end page
volume
issue