Permissive Electroconductive Nanocomposites for Neuronal Progenitor Cells Conference Paper uri icon


  • © 2019 IEEE. Scaffold development for hosting progenitor and stem cells for tissue and regenerative engineering applications necessitates engineering of biomaterials to mimic the specific tissue environment. Such biomimicry includes the topographical, mechanical and electrical properties of the materials. In this study, the development of a nanocomposite of polyaniline-chloride and chitosan (PAn-Cl/CHI) for electro-responsive PC-12 neural progenitor cells is reported. The conductivity of the scaffold was controlled by the weight percentage of PAn-Cl. The nanocomposites were non-cytotoxic and supported the growth and proliferation of PC-12 cells in the absence of any extracellular matrix protein. Such growth, however, was dependent on both composition and conductivity of the scaffold as there was a range of PAn-Cl nanofiber composition that produced the highest cell viability. In the presence of NGF to induce differentiation, the importance of bioactive cell adhesion site became evident as differentiation was highly restricted on the nanocomposite in the absence of a laminin coating. Moreover, the availability of passive electrical cues (i.e. presence of PAn-Cl), favorably enhanced PC-12 neurite outgrowth during differentiation. Overall, the results of the study indicated the substantive role of electro-physiological and morphological cues in regulating cellular process.

altmetric score

  • 0.5

author list (cited authors)

  • Abasi, S., Aggas, J. R., & Guiseppi-Elie, A.

citation count

  • 2

publication date

  • March 2019