Optimal mixed strategies in a dynamic game Academic Article uri icon


  • In this paper we treat a specific two-person, zero-sum, dynamic game of the type xk+1=f(xk,uk,wk). The optimal solutions for this game (i.e., a saddle point) have to be sought in the class of mixed (synonymously, randomized) strategies. For this particular game a theory of optimality of mixed strategies is developed and a hierarchy of problems of increasing generality, within this particular game, is solved. The specific game considered is one of the most classic of the problems in game theory. A gun is firing at a moving object How best should the object move in order to reach a certain destination? Conversely, where should the gun fire in order to prevent the object from reaching its destination? This problem occurs in different guises in a variety of situations. The moving object could, for example, be a ship or a tank. The optimal strategies of the two players have perforce to be mixed. 1980 IEEE

published proceedings

  • IEEE Transactions on Automatic Control

author list (cited authors)

  • Kumar, P.

citation count

  • 7

complete list of authors

  • Kumar, P

publication date

  • August 1980