Estimating partially linear panel data models with one-way error components
Overview
Research
Identity
Additional Document Info
View All
Overview
abstract
We consider the problem of estimating a partially linear panel data model whenthe error follows an one-way error components structure. We propose a feasiblesemiparametric generalized least squares (GLS) type estimator for estimating the coefficient of the linear component and show that it is asymptotically more efficient than a semiparametric ordinary least squares (OLS) type estimator. We also discussed the case when the regressor of the parametric component is correlated with the error, and propose an instrumental variable GLS-type semiparametric estimator. 1998 by Marcel Dekker, Inc.