Pointwise bounds and blow-up for nonlinear fractional parabolic inequalities
Overview
Research
Identity
Additional Document Info
Other
View All
Overview
abstract
2019 Elsevier Masson SAS We investigate pointwise upper bounds for nonnegative solutions u(x,t) of the nonlinear initial value problem 0( t ) uu in R n R,n1, u=0in R n (,0) where and are positive constants. To do this we first give a definitiontailored for our study of (0.1), (0.2)of fractional powers of the heat operator ( t ) :YX where X and Y are linear spaces whose elements are real valued functions on R n R and 0<< 0 for some 0 which depends on n, X and Y. We then obtain, when they exist, optimal pointwise upper bounds on R n (0,) for nonnegative solutions uY of the initial value problem (0.1), (0.2) with particular emphasis on those bounds as t0 + and as t.