GBP1 overexpression is associated with a paclitaxel resistance phenotype.
Academic Article
Overview
Research
Identity
Additional Document Info
Other
View All
Overview
abstract
In the search for novel genes involved in the paclitaxel resistance phenotype, prior studies of gene expression in paclitaxel-resistant cell lines and their paired drug-sensitive parental lines using high-density Affymetrix GeneChip arrays identified guanylate-binding protein 1 (GBP1) gene as an overexpressed transcript. The GBP1 gene encodes a large GTPase that is induced by interferon gamma (IFN-gamma) in a variety of eukaryotic cells. In this report we characterize GBP1 and demonstrate that GBP1 expression is consistently upregulated in 7 of 8 paclitaxel or doxorubicin-resistant human cancer cell lines as compared to its expression in the relevant drug-sensitive parental lines. Analysis of GBP1 expression using the Cancer Profiling Array showed that GBP1 is ubiquitously expressed with no significant difference in expression levels between normal and tumor tissue. Parallel analysis of the Cancer Cell Line Profiling Array determined that GBP1 expression in a majority of cell lines derived from human tumors of different tissue origin was induced to variable levels following exposure to multiple stress agents including paclitaxel and doxorubicin. Importantly, stable expression of a GBP1 transgene in the paclitaxel-sensitive ovarian cancer cell line OVCAR8 was sufficient to confer moderate paclitaxel resistance. Our data suggest that increased expression of the GBP1 gene may play an important role in the development of multi-drug resistance (MDR).