Parametric uncertainty quantification using proper generalized decomposition applied to neutron diffusion Academic Article uri icon

abstract

  • © 2019 John Wiley & Sons, Ltd. In this paper, a proper generalized decomposition (PGD) approach is employed for uncertainty quantification purposes. The neutron diffusion equation with external sources, a diffusion-reaction problem, is used as the parametric model. The uncertainty parameters include the zone-wise constant material diffusion and reaction coefficients as well as the source strengths, yielding a large uncertain space in highly heterogeneous geometries. The PGD solution, parameterized in all uncertain variables, can then be used to compute mean, variance, and more generally probability distributions of various quantities of interest. In addition to parameterized properties, parameterized geometrical variations of three-dimensional models are also considered in this paper. To achieve and analyze a parametric PGD solution, algorithms are developed to decompose the model's parametric space and semianalytically integrate solutions for evaluating statistical moments. Varying dimensional problems are evaluated to showcase PGD's ability to solve high-dimensional problems and analyze its convergence.

author list (cited authors)

  • Prince, Z. M., & Ragusa, J. C.

citation count

  • 4

publication date

  • August 2019

publisher