Mechanistic Insight into the Effect of Metal Ions on Photogeneration of Reactive Species from Dissolved Organic Matter. Academic Article uri icon

abstract

  • The photogeneration of reactive species (RS) from dissolved organic matter (DOM) exhibits a great impact on the attenuation of pollutants in natural waters. However, the effect of metal ions on the photogeneration of excited triplet-state DOM (3DOM*), singlet oxygen (1O2), and hydroxyl radical (•OH) by effluent organic matter (EfOM), fulvic acid (FA), and humic acid (HA) is poorly understood. Here, we provided the first evidence that the quenching of 3DOM* was positively correlated with the complexation capacity of metal ions with DOM. Generally, the paramagnetic metal ions (Cr3+, Mn2+, Fe3+, and Cu2+) exhibited higher conditional stability constants (log KML) with DOM and stronger inhibition for RS than the others (Mg2+, Ca2+, Al3+, and Zn2+). For DOM of different sources, the metal binding capacity increased in the order of EfOM < HA < FA and the humic substances were more susceptible to metal ions. The inhibition was attributed to both static and dynamic quenching of 3DOM* by metal ions. The dynamic quenching rate constants of metal ions for 3DOM* were estimated as ∼109 M-1 s-1, which was positively related to the corresponding log KML. These findings highlight crucial links between metal-DOM complexation and 3DOM* quenching and, consequently, the inhibition of RS.

author list (cited authors)

  • Wan, D., Sharma, V. K., Liu, L. u., Zuo, Y., & Chen, Y.

citation count

  • 14

publication date

  • April 2019