Protein-protein binding detection with nanoparticle photonic crystal enhanced microscopy (NP-PCEM). Conference Paper uri icon

abstract

  • We demonstrate a novel microscopy-based biosensing approach that utilizes a photonic crystal (PC) surface to detect protein-protein binding with the functionalized nanoparticles as tags. This imaging approach utilizes the measurement of localized shifts in the resonant wavelength and resonant reflection magnitude from the PC biosensor in the presence of individual nanoparticles. Moreover, it substantially increases the sensitivity of the imaging approach through tunable localized surface plasmon resonant frequency of the nanoparticle matching with the resonance of the PC biosensor. Experimental demonstrations of photonic crystal enhanced microscopy (PCEM) imaging with single nanoparticle resolution are supported by Finite-Difference Time-Domain (FDTD) computer simulations. The ability to detect the surface adsorption of individual nanoparticles as tags offers a route to single molecule biosensing with photonic crystal biosensor in the future.

name of conference

  • 2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society

published proceedings

  • Annu Int Conf IEEE Eng Med Biol Soc

author list (cited authors)

  • Zhuo, Y., Tian, L., Chen, W., Yu, H., Singamaneni, S., & Cunningham, B. T.

citation count

  • 3

complete list of authors

  • Zhuo, Yue||Tian, Limei||Chen, Weili||Yu, Hojeong||Singamaneni, Srikanth||Cunningham, Brian T

publication date

  • January 2014