Invariant analysis of the Reynolds stress tensor for a nuclear fuel assembly with spacer grid and split type vanes
Overview
Identity
Additional Document Info
Other
View All
Overview
abstract
2019 Invariant analysis of the Reynolds stress tensor anisotropy can give an accurate and deep intuitive understanding of the turbulent structure of a turbulent flow. Lumley's triangle has proven to be a powerful representation of the invariant analysis of the second-order statistics collection provided by the Reynolds stress tensor. In the present work the spectral element code Nek5000 has been used to investigate the turbulent structure of the flow across a pressurized water reactor spacer grid with split type mixing vanes. Wall-resolved large eddy simulation of the flow in a prototypical rod bundle geometry at Re = 14,000 and P/D = 1.32 are performed and validated against particle image velocimetry data. The results are then used to perform an in-depth invariant analysis. The results show a reorganization of the Reynolds stresses components in the downstream region of the spacer grid. The mixing vanes orientation produces a symmetric behavior between sub-channels. The turbulent structure in the fully developed region has the typical behavior of fully-developed channel flow turbulence. When averaging the state across regions of the sub-channels, we observed a transition from disk-like turbulence in the mixing vanes region to rod-like turbulence in the fully developed region.