Integrated process design, scheduling, and control using multiparametric programming Academic Article uri icon

abstract

  • © 2019 Elsevier Ltd A unified theory and framework for the integration of process design, control, and scheduling based on a single high fidelity model is presented. The framework features (i) a mixed-integer dynamic optimization (MIDO) formulation with design, scheduling, and control considerations, and (ii) a multiparametric optimization strategy for the derivation of offline/explicit maps of optimal receding horizon policies. Explicit model predictive control schemes are developed as a function of design and scheduling decisions, and similarly design dependent scheduling policies are derived accounting for the closed-loop dynamics. Inherent multi-scale gap issues are addressed by an offline design dependent surrogate model. The proposed framwork is illustrated by two example problems, a system of two continuous stirred tank reactor, and a small residential combined heat and power (CHP) network.

author list (cited authors)

  • Burnak, B., Diangelakis, N. A., Katz, J., & Pistikopoulos, E. N.

citation count

  • 22

publication date

  • June 2019