A DUALITY-BASED OPTIMIZATION APPROACH FOR MODEL ADAPTIVITY IN HETEROGENEOUS MULTISCALE PROBLEMS
Overview
Research
Identity
Additional Document Info
Other
View All
Overview
abstract
2018 Society for Industrial and Applied Mathematics. This paper introduces a novel framework for model adaptivity in the context of heterogeneous multiscale problems. The framework is based on the idea to interpret model adaptivity as a minimization problem of local error indicators that are derived in the general context of the dual weighted residual (DWR) method. Based on the optimization approach a postprocessing strategy is formulated that lifts the requirement of strict a priori knowledge about applicability and quality of effective models. This allows for the systematic, goal-oriented tuning of effective models with respect to a quantity of interest. The framework is tested numerically on elliptic diffusion problems with different types of heterogeneous, random coefficients, as well as an advection-diffusion problem with a strong microscopic, random advection field.