Superstrength through Nanotwinning. uri icon

abstract

  • The theoretical strength of a material is the minimum stress to deform or fracture the perfect single crystal material that has no defects. This theoretical strength is considered as an upper bound on the attainable strength for a real crystal. In contradiction to this expectation, we use quantum mechanics (QM) simulations to show that for the boron carbide (B4C) hard ceramic, this theoretical shear strength can be exceeded by 11% by imposing nanoscale twins. We also predict from QM that the indentation strength of nanotwinned B4C is 12% higher than that of the perfect crystal. Further, we validate this effect experimentally, showing that nanotwinned samples are harder by 2.3% than the twin-free counterpart of B4C. The origin of this strengthening mechanism is suppression of twin boundary (TB) slip within the nanotwins due to the directional nature of covalent bonds at the TB.

published proceedings

  • Nano Lett

author list (cited authors)

  • An, Q. i., Goddard, W. A., Xie, K. Y., Sim, G., Hemker, K. J., Munhollon, T., Toksoy, M. F., & Haber, R. A.

citation count

  • 54

complete list of authors

  • An, Qi||Goddard, William A||Xie, Kelvin Y||Sim, Gi-Dong||Hemker, Kevin J||Munhollon, Tyler||Toksoy, M Fatih||Haber, Richard A

publication date

  • December 2016