Microstructural characterization of boron-rich boron carbide
Academic Article
Overview
Research
Identity
Additional Document Info
Other
View All
Overview
abstract
2017 Acta Materialia Inc. Boron carbide has a wide range of solubility, but the effects of stoichiometry on its microstructure and mechanical response are not well understood. In this study, detailed microstructural characterization was carried out on three hot-pressed B-rich boron carbide samples. Lattice parameter measurements from XRD identified the compositions to be B4.2C, B5.6C and B7.6C. Local substitutional disorder was observed by Raman spectroscopy, particularly for more B-rich samples. Electron energy loss spectroscopy observations suggest that excess boron preferentially substitutes for carbon atoms in the B11C icosahedra; after which additional boron modifies the CBC chains. Moreover, the boron content has salient effects on boron carbide densification and microstructure. Improved densification was observed in the more B-rich samples (B5.6C and B7.6C), and there is a transition from few or no intragranular planar defects (B4.2C), to numerous stacking faults (B5.6C), to copious twins (B7.6C). Nanoindentation experiments revealed that the highest value for B4.2C is statistically larger than that for B5.6C or B7.6C, suggesting that the hardness of boron carbide is reduced by boron substitution.