A multi-parametric optimization approach for bilevel mixed-integer linear and quadratic programming problems
Academic Article
Overview
Research
Identity
Additional Document Info
Other
View All
Overview
abstract
2019 Elsevier Ltd Optimization problems involving two decision makers at two different decision levels are referred to as bi-level programming problems. In this work, we present novel algorithms for the exact and global solution of two classes of bi-level programming problems, namely (i) bi-level mixed-integer linear programming problems (B-MILP) and (ii) bi-level mixed-integer convex quadratic programming problems (B-MIQP) containing both integer and bounded continuous variables at both optimization levels. Based on multi-parametric programming theory, the main idea is to recast the lower level problem as a multi-parametric programming problem, in which the optimization variables of the upper level problem are considered as bounded parameters for the lower level. The resulting exact multi-parametric mixed-integer linear or quadratic solutions are then substituted into the upper level problem, which can be solved as a set of single-level, independent, deterministic mixed-integer optimization problems. Extensions to problems including right-hand-side uncertainty on both lower and upper levels are also discussed. Finally, computational implementation and studies are presented through test problems.