Decentralized Learning for Multiplayer Multiarmed Bandits Academic Article uri icon

abstract

  • We consider the problem of distributed online learning with multiple players in multiarmed bandit (MAB) models. Each player can pick among multiple arms. When a player picks an arm, it gets a reward. We consider both independent identically distributed (i.i.d.) reward model and Markovian reward model. In the i.i.d. model, each arm is modeled as an i.i.d. process with an unknown distribution with an unknown mean. In the Markovian model, each arm is modeled as a finite, irreducible, aperiodic and reversible Markov chain with an unknown probability transition matrix and stationary distribution. The arms give different rewards to different players. If two players pick the same arm, there is a collision, and neither of them get any reward. There is no dedicated control channel for coordination or communication among the players. Any other communication between the users is costly and will add to the regret. We propose an online index-based distributed learning policy called dUCB4 algorithm that trades off exploration versus exploitation in the right way, and achieves expected regret that grows at most as near-O(log2T). The motivation comes from opportunistic spectrum access by multiple secondary users in cognitive radio networks wherein they must pick among various wireless channels that look different to different users. This is the first distributed learning algorithm for multiplayer MABs with heterogeneous players (that have player-dependent rewards) to the best of our knowledge. © 1963-2012 IEEE.

author list (cited authors)

  • Kalathil, D., Nayyar, N., & Jain, R.

citation count

  • 68

publication date

  • April 2014