Model for predicting damage evolution in heterogeneous viscoelastic asphaltic mixtures
Conference Paper
Overview
Additional Document Info
View All
Overview
abstract
Cracking in the asphaltic layer of pavements has been shown to be a major source of distress in roadways. Previous studies in asphaltic mixture cracking typically have not considered the material heterogeneity. The sequel of a study in which the binder and the aggregates were treated as distinct materials is presented. Besides consideration of the viscoelastic behavior of the bulk asphalt binder, a micromechanical viscoelastic cohesive zone model introducing ductility at the crack tip has been considered. The simulations performed are verified and calibrated from simple and conventional laboratory tests. The study investigates crack evolution under monotonic loading, even though the method outlined can be further developed for the investigation of asphalt mixture fatigue.