Smoothed Dilated Convolutions for Improved Dense Prediction Conference Paper uri icon

abstract

  • 2018 Association for Computing Machinery. Dilated convolutions, also known as atrous convolutions, have been widely explored in deep convolutional neural networks (DCNNs) for various tasks like semantic image segmentation, object detection, audio generation, video modeling, and machine translation. However, dilated convolutions suffer from the gridding artifacts, which hampers the performance of DCNNs with dilated convolutions. In this work, we propose two simple yet effective degridding methods by studying a decomposition of dilated convolutions. Unlike existing models, which explore solutions by focusing on a block of cascaded dilated convolutional layers, our methods address the gridding artifacts by smoothing the dilated convolution itself. By analyzing them in both the original operation and the decomposition views, we further point out that the two degridding approaches are intrinsically related and define separable and shared (SS) operations, which generalize the proposed methods. We evaluate our methods thoroughly on two datasets and visualize the smoothing effect through effective receptive field analysis. Experimental results show that our methods yield significant and consistent improvements on the performance of DCNNs with dilated convolutions, while adding negligible amounts of extra training parameters.

name of conference

  • Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining

published proceedings

  • KDD'18: PROCEEDINGS OF THE 24TH ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY & DATA MINING

altmetric score

  • 11.33

author list (cited authors)

  • Wang, Z., & Ji, S.

citation count

  • 77

complete list of authors

  • Wang, Zhengyang||Ji, Shuiwang

publication date

  • July 2018