Optimization of Spectral and Spatial Conditions to Improve Super-Resolution Imaging of Plasmonic Nanoparticles. Academic Article uri icon


  • Interactions between fluorophores and plasmonic nanoparticles modify the fluorescence intensity, shape, and position of the observed emission pattern, thus inhibiting efforts to optically super-resolve plasmonic nanoparticles. Herein, we investigate the accuracy of localizing dye fluorescence as a function of the spectral and spatial separations between fluorophores (Alexa 647) and gold nanorods (NRs). The distance at which Alexa 647 interacts with NRs is varied by layer-by-layer polyelectrolyte deposition while the spectral separation is tuned by using NRs with varying localized surface plasmon resonance (LSPR) maxima. For resonantly coupled Alexa 647 and NRs, emission to the far field through the NR plasmon is highly prominent, resulting in underestimation of NR sizes. However, we demonstrate that it is possible to improve the accuracy of the emission localization when both the spectral and spatial separations between Alexa 647 and the LSPR are optimized.

published proceedings

  • J Phys Chem Lett

altmetric score

  • 0.5

author list (cited authors)

  • De Silva Indrasekara, A. S., Shuang, B. o., Hollenhorst, F., Hoener, B. S., Hoggard, A., Chen, S., ... Landes, C. F

citation count

  • 19

complete list of authors

  • De Silva Indrasekara, A Swarnapali||Shuang, Bo||Hollenhorst, Franziska||Hoener, Benjamin S||Hoggard, Anneli||Chen, Sishan||Villarreal, Eduardo||Cai, Yi-Yu||Kisley, Lydia||Derry, Paul J||Chang, Wei-Shun||Zubarev, Eugene R||Ringe, Emilie||Link, Stephan||Landes, Christy F

publication date

  • January 2017