Advancing Frontiers in Bone Bioprinting.
Academic Article
Overview
Research
Identity
Additional Document Info
Other
View All
Overview
abstract
Three-dimensional (3D) bioprinting of cell-laden biomaterials is used to fabricate constructs that can mimic the structure of native tissues. The main techniques used for 3D bioprinting include microextrusion, inkjet, and laser-assisted bioprinting. Bioinks used for bone bioprinting include hydrogels loaded with bioactive ceramics, cells, and growth factors. In this review, a critical overview of the recent literature on various types of bioinks used for bone bioprinting is presented. Major challenges, such as the vascularity, clinically relevant size, and mechanical properties of 3D printed structures, that need to be addressed to successfully use the technology in clinical settings, are discussed. Emerging approaches to solve these problems are reviewed, and future strategies to design customized 3D printed structures are proposed.