In vitro evaluation of a controlled-release site-specific diisovaleryl tert-butalone chemical delivery system for the eye.
Overview
Research
Identity
Additional Document Info
Other
View All
Overview
abstract
Cellulosic polymers such as cellulose acetate (CA), cellulose acetate butyrate (CAB), and hydroxypropyl methyl cellulose phthalate (HPMCP) and hydrogels (hydroxyethyl/hydroxypropyl acrylate and hydroxypropyl methacrylate monomers) were used to sustain/control the release of diisovaleryl tert-butalone, a novel site-specific chemical delivery system (CDS) for potential antiglaucoma treatment. Diisovaleryl tert-butalone was incorporated into cellulosic polymers by the method of "solution casting" and into hydrogels by the method of "impregnation." In vitro release-rate kinetics from these systems were studied using a closed sink kinetic model. The release rate of CDS from the polymers chosen followed first-order kinetics and the release was sustained for about 2-6 h. In the case of hydrogels a pronounced "burst release" was observed. Increasing the percentage of cross-linker in the linear monomers of the hydrogel was shown to sustain the release longer. When the diisovaleryl tert-butalone CDS was incorporated into one of the cellulosic polymers, cellulose acetate butyrate, as the CDS-beta-cyclodextrin [heptakis(2,6-di-O-methyl)-beta-cyclodextrin] inclusion complex, the release pattern approximated Higuchi's expression for a monolithic matrix system, where the amount of CDS released from the polymer was proportional to the square-root of time. Further, the stability of the CDS in the polymer was improved when it was dispersed in the polymer as the CDS-beta-cyclodextrin CD complex.