Prenatal transportation stress alters genome-wide DNA methylation in suckling Brahman bull calves. Academic Article uri icon

abstract

  • The objective of this experiment was to identify genome-wide differential methylation of DNA in young prenatally stressed (PNS) bull calves. Mature Brahman cows (n = 48) were transported for 2-h periods at 60 5, 80 5, 100 5, 120 5, and 140 5 d of gestation or maintained as nontransported Controls (n = 48). Methylation of DNA from white blood cells from a subset of 28-d-old intact male offspring (n = 7 PNS; n = 7 Control) was assessed via reduced representation bisulfite sequencing. Samples from PNS bulls contained 16,128 CG, 226 CHG, and 391 CHH (C = cytosine; G = guanine; H = either adenine, thymine, or cytosine) sites that were differentially methylated compared to samples from Controls. Of the CG sites, 7,407 were hypermethylated (at least 10% more methylated than Controls; P 0.05) and 8,721 were hypomethylated (at least 10% less methylated than Controls; P 0.05). Increased DNA methylation in gene promoter regions typically results in decreased transcriptional activity of the region. Therefore, differentially methylated CG sites located within promoter regions (n = 1,205) were used to predict (using Ingenuity Pathway Analysis software) alterations to canonical pathways in PNS compared with Control bull calves. In PNS bull calves, 113 pathways were altered (P 0.05) compared to Controls. Among these were pathways related to behavior, stress response, metabolism, immune function, and cell signaling. Genome-wide differential DNA methylation and predicted alterations to pathways in PNS compared with Control bull calves suggest epigenetic programming of biological systems in utero.

published proceedings

  • J Anim Sci

author list (cited authors)

  • Littlejohn, B. P., Price, D. M., Neuendorff, D. A., Carroll, J. A., Vann, R. C., Riggs, P. K., ... Randel, R. D.

publication date

  • January 1, 2018 11:11 AM