Ras-Dependent Cell Fate Decisions Are Reinforced by the RAP-1 Small GTPase in Caenorhabditiselegans.
Academic Article
Overview
Research
Identity
Additional Document Info
Other
View All
Overview
abstract
The notoriety of the small GTPase Ras as the most mutated oncoprotein has led to a well-characterized signaling network largely conserved across metazoans. Yet the role of its close relative Rap1 (Ras Proximal), which shares 100% identity between their core effector binding sequences, remains unclear. A long-standing controversy in the field is whether Rap1 also functions to activate the canonical Ras effector, the S/T kinase Raf. We used the developmentally simpler Caenorhabditis elegans, which lacks the extensive paralog redundancy of vertebrates, to examine the role of RAP-1 in two distinct LET-60/Ras-dependent cell fate patterning events: induction of 1 vulval precursor cell (VPC) fate and of the excretory duct cell. Fluorescence-tagged endogenous RAP-1 is localized to plasma membranes and is expressed ubiquitously, with even expression levels across the VPCs. RAP-1 and its activating GEF PXF-1 function cell autonomously and are necessary for maximal induction of 1 VPCs. Critically, mutationally activated endogenous RAP-1 is sufficient both to induce ectopic 1s and duplicate excretory duct cells. Like endogenous RAP-1, before induction GFP expression from the pxf-1 promoter is uniform across VPCs. However, unlike endogenous RAP-1, after induction GFP expression is increased in presumptive 1s and decreased in presumptive 2s. We conclude that RAP-1 is a positive regulator that promotes Ras-dependent inductive fate decisions. We hypothesize that PXF-1 activation of RAP-1 serves as a minor parallel input into the major LET-60/Ras signal through LIN-45/Raf.