Evaluating apoenzyme-coenzyme-substrate interactions of methane monooxygenase with an engineered active site for electron harvesting: a computational study. Academic Article uri icon

abstract

  • Low-temperature methane oxidation is one of the greatest challenges in energy research. Although methane monooxygenase (MMO) does this catalysis naturally, how to use this biocatalyst in a fuel cell environment where the electrons generated during the oxidation process is harvested and used for energy generation has not yet been investigated. A key requirement to use this enzyme in a fuel cell is wiring of the active site of the enzyme directly to the supporting electrode. In soluble MMO (sMMO), two cofactors, i.e., nicotinamide adenine di-nucleotide (NAD+) and flavin adenine dinucleotide (FAD) provide opportunities for direct attachment of the enzyme system to a supporting electrode. However, once modified to be compatible with a supporting metal electrode via FeS functionalization, how the two cofactors respond to complex binding phenomena is not yet understood. Using docking and molecular dynamic simulations, modified cofactors interactions with sMMO-reductase (sMMOR) were studied. Studies revealed that FAD modification with FeS did not interfere with binding phenomena. In fact, FeS introduction significantly improved the binding affinity of FAD and NAD+ on sMMOR. The simulations revealed a clear thermodynamically more favorable electron transport path for the enzyme system. This system can be used as a fuel cell and we can use FeS-modified-FAD as the anchoring molecule as opposed to using NAD+. The overall analysis suggests the strong possibility of building a fuel cell that could catalyze methane oxidation using sMMO as the anode biocatalyst.

published proceedings

  • J Mol Model

author list (cited authors)

  • Zhang, S., Karthikeyan, R., & Fernando, S. D.

citation count

  • 1

publication date

  • November 2018