Sunlight induced aggregation of dissolved organic matter: Role of proteins in linking organic carbon and nitrogen cycling in seawater.
Academic Article
Overview
Research
Identity
Additional Document Info
Other
View All
Overview
abstract
Organic matter export from the euphotic zone is a key component of oceanic carbon (C) and nitrogen (N) cycles. Although interactions between these two cycles are important, studies on geochemical processes to directly connect them are limited. Here we show that sunlight can induce chemical aggregation of dissolved organic matter (DOM) into high N containing photo-aggregates. The size of microgels in natural coastal seawaters increased by18~25% compared to corresponding dark controls. Within a relatively short time (1h), the C and N sequestered into the photo-aggregates accounted for 10% and 13% of the bulk particulate C and N, respectively. The N/C ratio of the photo-aggregates was two times higher after sunlight irradiation. Furthermore, we show that the aggregation process was dependent on reactive oxygen species (ROS). To accommodate for the different organic material in the marine environment, we monitored the particle size in various extracellular polymeric substances (EPS) and model biopolymers using flow cytometry, dynamic laser scattering, and scanning electron microscopy. We found that proteins play important roles in light-induced aggregation, which is in contrast to previous views that sunlight can break down DOM and interrupt aggregation. The photo-flocculation process involving organic N provides new insights into DOM assembly, bioavailability, and sedimentation, and thus potentially link the C and N cycles.