Global Exponential Stability and Synchronization for Discrete-Time Inertial Neural Networks With Time Delays: A Timescale Approach.
Overview
Research
Identity
Additional Document Info
Other
View All
Overview
abstract
This paper considers generalized discrete-time inertial neural network (GDINN). By timescale theory, the original network is rewritten as a timescale-type inertial NN. Two different scenarios are considered. In a first scenario, several criteria guaranteeing the global exponential stability for the addressed GDINN are obtained based on the generalized matrix measure concept. In this case, Lyapunov function or functional is not necessary. In a second scenario, some inequality analytical and scaling techniques are used to achieve the global exponential stability for the considered GDINN. The obtained criteria are also applied to the global exponential synchronization of drive-response GDINNs. Several illustrative examples, including applications to the pseudorandom number generator and encrypted image transmission, are given to show the effectiveness of the theoretical results.