Robust Recurrent CNV Detection in the Presence of Inter-Subject Variability.
Academic Article
Overview
Research
Identity
Additional Document Info
View All
Overview
abstract
The study of recurrent copy number variations (CNVs) plays an important role in understanding the onset and evolution of complex diseases such as cancer. Array-based comparative genomic hybridization (aCGH) is a widely used microarray based technology for identifying CNVs. However, due to high noise levels and inter-sample variability, detecting recurrent CNVs from aCGH data remains a challenging topic. This paper proposes a novel method for identification of the recurrent CNVs. In the proposed method, the noisy aCGH data is modeled as the superposition of three matrices: a full-rank matrix of weighted piece-wise generating signals accounting for the clean aCGH data, a Gaussian noise matrix to model the inherent experimentation errors and other sources of error, and a sparse matrix to capture the sparse inter-sample (sample-specific) variations. We demonstrated the ability of our method to separate accurately recurrent CNVs from sample-specific variations and noise in both simulated (artificial) data and real data. The proposed method produced more accurate results than current state-of-the-art methods used in recurrent CNV detection and exhibited robustness to noise and sample-specific variations.