Compliant Hybrid Gas Bearing Using Modular Hermetically Sealed Squeeze Film Dampers Academic Article uri icon

abstract

  • This paper presents a new gas bearing concept that targets machine applications in the megawatt (MW) power range. The concept involves combining a compliant hybrid gas bearing (CHGB) with two hermetically sealed squeeze film damper (HSFD) modules installed in the bearing support damper cavities. The main aim of the research was to demonstrate gas bearing-support damping levels using HSFD that rival conventional open-flow squeeze film dampers (SFD) in industry. A detailed description of the bearing design and functionality is discussed while anchoring the concept through a brief recap of past gas bearing concepts. Proof-of-concept experimental testing is presented involving parameter identification of the bearing support force coefficients along with a demonstration of speed and load capability using recessed hydrostatic pads. Finally, a landing test was performed on the bearing at high speed and load with porous carbon pads to show capability of sustaining rubs at high speeds. The component testing revealed robust viscous damping in the bearing support, which was shown to be comparable to existing state of the art SFD concepts. The damping and stiffness of the system-portrayed moderate frequency dependency, which was simulated using a 2D Reynolds-based incompressible fluid flow model. Finally, rotating tests demonstrated the ability of the gas bearing concept to sustain journal excursions and loads indicative of critical speed transitions experienced in large turbomachinery.

published proceedings

  • JOURNAL OF ENGINEERING FOR GAS TURBINES AND POWER-TRANSACTIONS OF THE ASME

author list (cited authors)

  • Ertas, B., & Delgado, A.

citation count

  • 10

complete list of authors

  • Ertas, Bugra||Delgado, Adolfo

publication date

  • February 2019