Effective spin-spin interactions in bilayers of Rydberg atoms and polar molecules
Academic Article
Overview
Research
Identity
Additional Document Info
Other
View All
Overview
abstract
2018 American Physical Society. We show that indirect spin-spin interactions between effective spin-1/2 systems can be realized in two parallel one-dimensional optical lattices loaded with polar molecules and/or Rydberg atoms. The effective spin can be encoded into low-energy rotational states of polar molecules or long-lived states of Rydberg atoms, tightly trapped in a deep optical lattice. The spin-spin interactions can be mediated by Rydberg atoms, placed in a parallel shallow optical lattice, interacting with the effective spins by charge-dipole (for polar molecules) or dipole-dipole (for Rydberg atoms) interaction. Indirect XX, Ising, and XXZ interactions with interaction coefficients J and Jzz sign varying with interspin distance can be realized, in particular, the J1-J2 XXZ model with frustrated ferro-(antiferro-)magnetic nearest (next-nearest) neighbor interactions.