Effective spin-spin interactions in bilayers of Rydberg atoms and polar molecules Academic Article uri icon

abstract

  • 2018 American Physical Society. We show that indirect spin-spin interactions between effective spin-1/2 systems can be realized in two parallel one-dimensional optical lattices loaded with polar molecules and/or Rydberg atoms. The effective spin can be encoded into low-energy rotational states of polar molecules or long-lived states of Rydberg atoms, tightly trapped in a deep optical lattice. The spin-spin interactions can be mediated by Rydberg atoms, placed in a parallel shallow optical lattice, interacting with the effective spins by charge-dipole (for polar molecules) or dipole-dipole (for Rydberg atoms) interaction. Indirect XX, Ising, and XXZ interactions with interaction coefficients J and Jzz sign varying with interspin distance can be realized, in particular, the J1-J2 XXZ model with frustrated ferro-(antiferro-)magnetic nearest (next-nearest) neighbor interactions.

published proceedings

  • PHYSICAL REVIEW A

altmetric score

  • 0.5

author list (cited authors)

  • Kuznetsova, E., Rittenhouse, S. T., Beterov, I. I., Scully, M. O., Yelin, S. F., & Sadeghpour, H. R.

citation count

  • 5

complete list of authors

  • Kuznetsova, Elena||Rittenhouse, Seth T||Beterov, II||Scully, Marlan O||Yelin, Susanne F||Sadeghpour, HR

publication date

  • October 2018