Role of excitatory amino acid transporter 1 in neonatal rat neuronal damage induced by hypoxia-ischemia. Academic Article uri icon

abstract

  • The role of excitatory amino acid transporter 1 in neonatal rat neuronal damage was studied following hypoxia-ischemia. To induce hypoxia-ischemia injury, rats on postnatal day 7 were exposed to 8 % oxygen for 2 h following unilateral common carotid artery ligation. According to brain damage scoring based on Cresyl Violet staining, the neuronal damage time-dependently changed in the ischemic regions following hypoxia-ischemia. Immunohistochemical studies showed that excitatory amino acid transporter 1 expression was mainly observed in the cerebral cortex ipsilateral to common carotid artery ligation and markedly increased at 24 h and 48 h following hypoxia-ischemia. Combined with confocal laser scanning microscopic analysis, double staining showed that excitatory amino acid transporter 1 positive staining appeared in neurons as well as astrocytes after hypoxia-ischemia. Most excitatory amino acid transporter 1 positive staining cells exhibited regular morphological characteristics and only a few were double-stained by terminal deoxynucleotidyl transferase-mediated deoxyuridinetriphosphate nick-end labeling. Down-regulation of excitatory amino acid transporter 1 expression by intraventricular administration of specific antisense oligonucleotide exacerbated neuronal damage in hypoxia-ischemia brain. These results suggest that the increase of excitatory amino acid transporter 1 expression may be involved in a pathophysiological process of hypoxia-ischemia brain damage and may reflect a self-compensative mechanism for protecting neurons from further injury.

published proceedings

  • Neuroscience

author list (cited authors)

  • Tao, F., Lu, S. D., Zhang, L. M., Huang, Y. L., & Sun, F. Y.

citation count

  • 30

complete list of authors

  • Tao, F||Lu, SD||Zhang, LM||Huang, YL||Sun, FY

publication date

  • January 2001