Arsenic trioxide targets MTHFD1 and SUMO-dependent nuclear de novo thymidylate biosynthesis. Academic Article uri icon

abstract

  • Arsenic exposure increases risk for cancers and is teratogenic in animal models. Here we demonstrate that small ubiquitin-like modifier (SUMO)- and folate-dependent nuclear de novo thymidylate (dTMP) biosynthesis is a sensitive target of arsenic trioxide (As2O3), leading to uracil misincorporation into DNA and genome instability. Methylenetetrahydrofolate dehydrogenase 1 (MTHFD1) and serine hydroxymethyltransferase (SHMT) generate 5,10-methylenetetrahydrofolate for de novo dTMP biosynthesis and translocate to the nucleus during S-phase, where they form a multienzyme complex with thymidylate synthase (TYMS) and dihydrofolate reductase (DHFR), as well as the components of the DNA replication machinery. As2O3 exposure increased MTHFD1 SUMOylation in cultured cells and in in vitro SUMOylation reactions, and increased MTHFD1 ubiquitination and MTHFD1 and SHMT1 degradation. As2O3 inhibited de novo dTMP biosynthesis in a dose-dependent manner, increased uracil levels in nuclear DNA, and increased genome instability. These results demonstrate that MTHFD1 and SHMT1, which are key enzymes providing one-carbon units for dTMP biosynthesis in the form of 5,10-methylenetetrahydrofolate, are direct targets of As2O3-induced proteolytic degradation, providing a mechanism for arsenic in the etiology of cancer and developmental anomalies.

published proceedings

  • Proc Natl Acad Sci U S A

altmetric score

  • 0.5

author list (cited authors)

  • Kamynina, E., Lachenauer, E. R., DiRisio, A. C., Liebenthal, R. P., Field, M. S., & Stover, P. J.

citation count

  • 28

complete list of authors

  • Kamynina, Elena||Lachenauer, Erica R||DiRisio, Aislyn C||Liebenthal, Rebecca P||Field, Martha S||Stover, Patrick J

publication date

  • March 2017