Investigation of Ethylene Oxide on Clean and Oxygen-Covered Ag(110) Surfaces Academic Article uri icon


  • Temperature-programmed desorption (TPD) and Density Functional Theory (DFT) were used to investigate the reactions of oxametallacycles derived from ethylene oxide on clean and oxygen-covered Ag(110) surfaces. Ethylene oxide ring-opens following adsorption at 250 K on both clean and O-covered Ag(110) to form a stable oxametallacycle. On the clean Ag(110) surface, the oxametallacycle reacts to reform the parent epoxide at 280 K during TPD, while the aldehyde isomer, acetaldehyde, is observed at higher oxametallacycle coverages. In the presence of coadsorbed oxygen atoms, a portion of the oxametallacycles dissociate to release ethylene. However, of those that react to form oxygen-containing products, the fraction forming ethylene oxide is similar to that on the clean surface. The acetaldehyde product of oxametallacycle reactions combusts via formation of acetate species; the acetates react to form CO 2 at temperatures as low as 360 K on the O-covered surface. No evidence was observed for other combustion channels. This work provides experimental evidence for the connection of oxametallacycles to combustion via acetaldehyde formation as well as to ring-closure to form ethylene oxide. 2008 Springer Science+Business Media, LLC.

published proceedings

  • Catalysis Letters

author list (cited authors)

  • Lukaski, A. C., & Barteau, M. A.

citation count

  • 35

complete list of authors

  • Lukaski, AC||Barteau, Mark A

publication date

  • March 2009