On the Debarre-de Jong and Beheshti-Starr Conjectures on Hypersurfaces with Too Many Lines Academic Article uri icon


  • We show that the Debarre-de Jong conjecture that the Fano scheme of lines on a smooth hypersurface of degree at most n in n-dimensional projective space must have its expected dimension, and the Beheshti-Starr conjecture that bounds the dimension of the Fano scheme of lines for hypersurfaces of degree at least n in n-dimensional projective space, reduce to determining if the intersection of the top Chern classes of certain vector bundles is nonzero.

published proceedings


author list (cited authors)

  • Landsberg, J. M., & Tommasi, O.

citation count

  • 2

complete list of authors

  • Landsberg, JM||Tommasi, Orsola

publication date

  • January 2010