On the Debarre-de Jong and Beheshti-Starr conjectures on hypersurfaces with too many lines Academic Article uri icon

abstract

  • We show that the Debarre-de Jong conjecture that the Fano scheme of lines on a smooth hypersurface of degree at most n in n-dimensional projective space must have its expected dimension, and the Beheshti-Starr conjecture that bounds the dimension of the Fano scheme of lines for hypersurfaces of degree at least n in n-dimensional projective space, reduce to determining if the intersection of the top Chern classes of certain vector bundles is nonzero.

author list (cited authors)

  • Landsberg, J., & Tommasi, O.

citation count

  • 1

publication date

  • December 2010